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ABSTRACT
This research addresses how to automatically identify certain fac-
tors in the texts of legal decisions and analyze their role in courts’
decisions. It focuses on drug interdiction auto stop cases in which
courts decide whether police officers have reasonable suspicion to
detain a motorist. It illustrates how the methods to identify factors
automatically can support empirical legal research in the domain
and how machine learning methods of different accuracy and in-
terpretability can be harnessed to explain case outcomes in terms
legal professionals can understand.

CCS CONCEPTS
•Applied computing→Law; Annotation; •Computingmethod-
ologies → Natural language processing.
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1 INTRODUCTION
Traffic stops are a frequent police-citizen encounter across the
United States of America. These common occurrences sometimes re-
sult in more than a traffic ticket. Police officers regularly attempt to
interdict the trafficking of drugs during routine traffic stops. When
officers observe facts that lead them to suspect drug trafficking,
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they are permitted to detain until a trained drug dog can confirm
or dispel the suspicion. If the officer’s suspicion is not reasonable,
however, the detention may violate the motorist’s constitutional
rights, an issue the motorist may raise as a defense if prosecuted.
In assessing the reasonableness of police officers’ suspicion, courts
consider a variety of factors.

Below, we present the results of two experiments that take a de-
tailed look into the identification of these factors and how they can
be used for empirical legal analysis. Overall, we present evidence
that these factors can be identified with a high degree of accuracy
using state-of-the-art transformer language models. Furthermore,
we apply a variety of machine learning techniques to evaluate the
soundness of our list of factors of suspicion and illuminate their
role in courts’ decisions. By combining the outputs of these models,
whose levels of interpretability vary, we illustrate how a system
could explain outcomes of cases in terms that legal professionals
can understand.

2 RELATEDWORK
According to Rempell [21, p. 2], “a factor is a consideration a deci-
sionmakermust or may take into account to determine an outcome.”
In law “factors are a foundational and ubiquitous concept . . . ”[21, p.
3]. “[T]hey can be prescribed in a statute or regulation, or created by
courts,” and play a role in diverse areas of law, including assessing
spousal support, determining violations of the right to a speedy
trial, determining consumer confusion as to the source of goods
in trademark infringement, determining works made for hire and
copyright fair use [21, p. 2f], [4, p. 1584f], [5, 6] and others.

In the AI and Law field, factors have been defined as stereotypi-
cal patterns of facts that tend to strengthen or weaken a plaintiff’s
argument in favor of a legal claim [2]. Factors have been regularly
employed in computational models of case-based argument to rep-
resent relevant case facts in a generalized way [1, 7]. Programs
that model argumentation with legal rules, cases, and underlying
values have also employed factors [11, 12, 14]. Such systems could
contribute more effectively to legal practice if a program could
automatically identify factors in textual description of facts in case
opinions or problem scenarios [2].
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Previous research in AI and Law has made some progress in
automatically identifying factors in opinion texts. Wyner and Pe-
ters [26] developed an annotation pipeline to extract information
related to factors from trade secret legal opinions. Brüninghaus
[3] applied machine learning algorithms (C4.5, Naïve Bayes and a
k-nearest neighbor approach) to identify factor-related sentences in
case summaries prepared by law students. In supervised learning,
Falakmasir [13] trained a Support Vector Machine to classify trade
secret misappropriation opinions by applicable factors. In [16], the
authors employed rules to automatically extract factor values from
divorce cases, augmented them using word embeddings, employed
them to predict outcomes and explained the outcomes in terms of
induced rules. Branting and colleagues trained a machine learning
program called SCALE (semi-supervised case annotation for legal
explanations) to identify factual finding tags comprising pairs of
issues in WIPO (World Intellectual Property Organization) domain
name dispute cases and associated factors commonly observed in
such cases [8]. For example, the PriorBizUse factor (i.e., “Bona fide
business use of Domain Name or demonstrable preparations to
do so, prior to notice of the dispute”) is related to “No Rights or
Legitimate Interests” (NRLI), a required element of a claim in a
WIPO case. By automatically identifying factual finding tags in case
texts, SCALE predicted case outcomes. In future work, the team
expected that the issue and factor labels could help to explain its
outcome predictions in terms of reasons that legal professionals
would understand [8].

In our approach, supervised machine learning is applied to auto-
matically identify factors of suspicion in drug interdiction auto stop
cases, arguably a more challenging task than identifying factors
in the divorce cases illustrated in [16] or the WIPO domain name
cases of [8]. Auto stop cases written by state and federal judges
across the country are more stylistically diverse thanWIPO domain
name arbitration cases written by arbitrators. The fact situations
encountered in auto stop cases are also likely to be more factually
diverse than in the WIPO cases and unlikely to be amenable to the
rule-based extraction approach of [16].

Unlike [8] we apply a transformer language model, RoBERTa
[18], which has been pretrained on an extensive text corpus. We
then fine tune the model in applying it on a training set of auto stop
cases. In [15], the researchers’ multi-label approach to automatically
classify factors of suspicion in auto stop cases achieved an average
f-1 score of 0.63. They noted that the classifier struggled with classes
having low numbers of cases, specifically those with a test sample
size of n<11. As explained below, in this work we attempt to address
that problem by employing a single-label multi-class approach.

We explore using a pipeline similar to the SCALE project that
employs factors to explain case outcomes. This is distinct from
prior work (e.g., [10]) that sought to predict outcomes from the
full text of legal decisions. As Branting points out, without factual
finding tags, “such systems have very limited inherent explanatory
capability.” [8]. Unlike the SCALE project, in explaining decided
cases, we employ a combination of interpretable ML models such
as decision trees, which are known to be intuitively understandable
[17], and case-based techniques to illustrate positive and negative
examples.

If successful, our project could substantially improve empirical
legal studies of factors like those in [4–6, 25]. For example, Beebe

investigated 331 federal district court opinions “from 2000-2004
that made substantial use of a multi-factor test for the likelihood
of consumer confusion” [4, p. 1584] as to the source of goods in
trademark infringement cases. He manually classified the opinions
recording, for each factor of the multi-factor test, whether the factor
was “found to favor [a/no] likelihood of confusion or otherwise
not to favor [no/a] likelihood of confusion.” He then applied simple
classification trees to 192 opinions involving preliminary injunc-
tions or bench trials [4, p. 1603]. Based on the classification trees,
Beebe concluded that “judges determine the test outcome based
on a limited number of core factors and then adjust the rest of the
factor outcomes to accord with that result.” [4, p. 1587]. Shao, et al.
applied decision trees with factors in child custody law to identify
the three most significant factors [25]. Rissland and Friedman [22]
applied decision trees using factor tests to model the state of the
law concerning good faith in bankruptcy cases over time. They de-
veloped metrics to characterize the degree of change in the decision
tree structures and identify changes in the related legal concepts.

Our results suggest that, instead of manually identifying factors
in case texts, empirical legal studies like [4], [25] and [22] could
employ text analytics to automatically identify factors in much
larger numbers of cases, improving their machine learning models
of case outcomes.

3 DATA
The experiments below employ the same annotated corpus of auto
stop cases introduced in [15]. This corpus of data contains a col-
lection of legal opinions on point to the issue of whether a police
officer has suspicion to detain a motorist on the grounds of reason-
able suspicion. Generally, United States jurisprudence prohibits the
prolonged detention of motorists, beyond what a traffic stop would
normally require, absent a showing of suspicion. The corpus has
been annotated to identify factors that are considered by officers in
making the determination of whether suspicion is present. A court’s
conclusion as to whether suspicion was found was also annotated.
In prior experiments we employed (and here employ) the corpus
of 211 state and federal auto stop cases, of which the courts found
reasonable suspicion was present in 63% and not present in 37%.
The same factors/types have also been employed here. The corpus
was annotated using the Gloss annotation environment developed
at the University of Pittsburgh [23]. As shown in Table 1, there are
20 substantive factors of suspicion, divided into six categories. The
sixth category contains a type for annotating any “other” factors
and two outcome types to indicate if the court found that reasonable
suspicion was or was not present.1

In [15], the researchers employed a multi-label full-sentence an-
notation scheme, where each sentence [24] was assigned all factors
that applied. If multiple factors were expressed in the sentence, the
sentence was assigned multiple labels. The annotation guidelines
and process reported in [15] achieved a moderate level of inter-
annotator agreement (0.57). As explained below, in this work we
have employed a single-label approach, in which those sentences

1The type “6U Possibly Off Point” is not included in this representation because it is
simply an administrative label used by annotators to indicate the case may be irrelevant
to the auto stop project.
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with multiple labels have been broken into parts, each assigned a
corresponding single label.

Table 1: Factors of Suspicion.

1 Occupant Appearance or Behavior 2 Occupant Status
1A Furtive Movement 2E Motorist License

1B Physical Appearance of Nervousness 2F Driver Status
1C Nervous Behavior 2G Refused Consent

1D Suspicious or Inconsistent Answers 2H Legal Indications of Drug Use
2I Motorist’s Appearance Related to Drug Use

3 Travel Plans 4 Vehicle
3J Possible Drug Route 4L Expensive Vehicle
3K Unusual Travel Plans 4M Vehicle License Plate or Registration

4N Unusual Vehicle Ownership
5 Vehicle Status 6 Other Annotation Labels

5O Indicia of Hard Travel 6T Other
5P Masking Agent 6V Suspicion Found? - No

5Q Vehicle Contents Suggest Drugs 6W Suspicion Found? - Yes
5R Suspicious Communication Device

5S Suspicious Storage

4 EXPERIMENTS
Our two experiments aim to assess the feasibility of a pipeline
to automatically identify factors in auto stop cases and, based on
those factors, to explain case decisions about whether reasonable
suspicion is satisfied. The first experiment aims to improve the per-
formance, reported in [15], of classifying factors of suspicion. The
second experiment aims to use interpretable machine learning mod-
els to explain the outcome of auto stop cases concerning whether
reasonable suspicion is present in a case based on the automatically
identified factors.

4.1 Classification of Factors
In the first experiment, we employed a multi-class approach to
automatically identify factors in case texts. The approach requires
that each individual data point bears a single label. As a result,
sentences that bore multiple labels were converted to single-label,
sub-sentence annotations.

For example, the sentence, “[The driver] also lied to the trooper
regarding his criminal history,” would be broken into two parts. The
first, “[The driver] also lied to the trooper,” captures the part of the
sentence describing a suspicious answer. The second, “regarding
his criminal history,” describes the driver’s criminal history.

The use of a single-label approach distinguishes this work from
[15], where the researchers had employed a multi-label approach.
If a sentence was an instance of two or more factors, they assigned
it multiple labels. As shown in figure 1, the vast majority of labeled
sentences bore only a single label. A smaller fraction bore two
labels, and minuscule amounts bore three labels or more.

We hypothesized that converting sentences with multiple labels
into sub-sentences with single labels would increase the number of
training instances for each label and decrease the possibility of con-
fusing the classification model. This is supported by the finding that
the amounts of n-label sentences containing more than one label
contained a considerable numbers of unique sets of labels. Specifi-
cally, 25% of 2-label, 64% of 3-label, 85% of 4-label, 80% of 5-label
40% of 7-label sentences were unique label combinations. Given the
high numbers of unique label combinations, we were concerned
about how well the classifier could cope with the complexity.

Figure 1: This figure shows the percentage of n-label sentences
in the data set prior to the data set being re-annotated to a
single-label approach. As shown in the chart, the vast major-
ity of sentences bear a single label (84%). The other 16% of the
sentences bear two or more labels, with a vast majority of this
portion bearing only two.

In order to utilize the multi-class approach, we developed a set
of guidelines for systematically dividing the sentences with two
or more labels into parts and assigning a single label to each part.
The guidelines were drafted with the intent to be implemented
in further large scale annotation tasks. Following the guidelines
three legal experts converted the multi-label sentences to single
labels. Two experts assigned the labels to each of the sub-sentence
annotations. To ensure compliance with the annotation guidelines,
a third expert then reviewed the assignments.

Using these annotations, we fine-tuned a roBERTa base model
[19], using a total of 48,390 sentences representing no-type and
4,601 representing a single type. Training occurred over 15 epochs,
with evaluation occurring at each epoch.

Table 2: Sample of Data Frame

Case Name Features Conclusion
usa_v_powell 1, 1, 0, 0, 1, ...0, 0, 0, 0, 0 1
state_v_haar 1, 0, 1, 0, 1 ...1, 0, 1, 0, 0 0
usa_v_smith 0, 0, 1, 0, 1... 0, 0, 0, 0, 0 0
usa_v_johnson 1, 1, 0, 1, 1, ...1, 0, 0, 0, 0 1
usa_v_walton 0, 1, 0, 1, 1, ...0, 0, 0, 0, 1 1

4.2 Explaining Outcomes
The second experiment tested how a machine learning model could
explain cases’ outcomes based on the factors of suspicion. We use
this experiment to gauge the performance of a machine learning
model under ideal conditions using annotated data.

The inputs were cases, each represented by the subset of the 20
substantive factors of suspicion that the automated classifier had
identified in the case. The two possible outcome labels were “6V
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Suspicion Found? - No” and “6W Suspicion Found? - Yes”. These
indicated the model’s factor-based prediction regarding the court’s
conclusion as to whether or not the police officer had reasonable
suspicion that drugs were present in the automobile. We show that
it is possible to reliably predict the outcome of the cases given the
factors, thereby providing strong evidence of a sound representation
of the selected domain in terms of the factors we identified.

As illustrated in Table 2, the cases, factors, and outcomes were
structured as a data frame, with each row representing a single
case. The 20 factors were coded as a vector of binary features with
each factor in its own column.2 If a feature was present in a case it
was coded as 1; if not it was coded as 0. The outcomes were coded
as 1 if reasonable suspicion was present and 0 if it was not. The
determination on the presence of a factor and the outcome was
based on the gold standard annotations. The data frame illustrated
in Table 2 has dimensions of 206 x 22.

We checked for correlation between the inputs, but detected
no issues. Because the features are binary variables, a tetrachoric
correlation matrix was used to assess correlation between the in-
puts. As shown in Figure 2 there were no features with a negative
correlation of less than -0.85 or a positive correlation greater than
0.85.

We trained eight different models to predict whether reasonable
suspicion was present in a case based on the factors we identified.
The data was divided into training and testing data using an 80:20
split. The same split was to train and test each model. Training
was performed using cross-validation with 10-folds, repeating the
procedure 3 times. The best parameters were found using a grid
search. Model predictions were assessed based on their accuracy
on the test set. The models we chose ranged in interpretability
from easily interpretable Decision Trees to difficult/impossible to
interpret methods like Neural Networks. The importance of model
interpretability is discussed below and was an important consid-
eration in these experiments. Where possible, the importance of
each variable in a model was calculated. Variable importance was
calculated using the Caret library available in R.3 Essentially, this
calculation estimates what variable or variables were most impor-
tant to the accuracy of the model in an attempt to reduce the lack
of interpretability of a model [9].

To get an idea of whether the models are capable of discrimi-
nating between the classes we compare the models to two naive
baselines. The first baseline predicts based on the frequency of the
outcome labels in the data. The second baseline model randomly
selects an outcome label with uniform probability for each label.

5 RESULTS AND DISCUSSION
5.1 Classification Task
The results of the first experiment’s classification task are shown
in the classification report in Table 3. There was a noticeable im-
provement from the results reported in [15]. The overall average f-1
score increased from 0.63 to 0.83, an increase of 0.20, with individual
categories increasing an average of 0.18.

2The ordering of the columns associated with the features is: 1B, 4N, 3J, 2G, 2H, 1C,
3K, 4M, 1D, 5P, 6T, 5Q, 5S, 2E, 1A, 5R, 2F, 5O, 2I
3Specifics about how the variable importance for each model is calculated can be found
here: https://topepo.github.io/caret/variable-importance.html

Figure 2: This figure shows the correlation between the in-
puts. The color blue indicates that there is a positive correla-
tion between the inputs. The larger and more blue the circle,
the more positively correlated the features are. The red cir-
cles indicate negative correlation. The larger and more red
the circle, the more negatively the features are correlated.

In general, moving from the multi-label approach to a single-
label multi-class approach significantly improved the results. In
addition, in [15] it was noted that classes with low support were
predicted with poor quality; classes with n<11 samples performed
worse. The current experiment shows that where the number of
samples in the test set is 11 or greater, f-1 scores did not drop below
0.70 and remained consistently above 0.70.4 In addition, as a result
of the single-label approach, three factors of suspicion now have
11 or more supporting instances (4M, 5R, and 5O).

5.1.1 Classification Task Error Analysis. The factor classification
model made 243 errors out of 9,678 sentences in the test set. The
confusion matrix in Figure 3 plots focuses on errors. The y-axis
represents the true labels assigned by the annotations; the x-axis
represents the predicted label given by the model. It shows that
the actual label “no_type” was frequently “wrongly” predicted by
the model, which assigned some factor of suspicion. Of the errors
made by the model, 43 of 243, or roughly 18%, involved the classifier
confusing one factor for another. In the overwhelming majority
of errors, 200/243 or 82%, the model assigned a factor label to a
sentence which the human annotators had left unlabeled. In effect,
the human-assigned label was no_type. This is shown in Figure 3
on the line of the y-axis associated with no_type, i.e., where the
model predicted that a factor was not described in a sentence. This
shows that a significant number of no_type labels were predicted
as belonging on to a type. However, on the line of the x-axis associ-
ated with n_t (the abbreviation for no type) we also see that many
sentences belonging to a type were also predicted as not belonging
to a type.

4The exception to this in Table 3 is for the factor 2F Driver Status, which has an f-1
score of 1.00, however, the support for this category is only a single case and therefore
at least moderately suspect.
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Figure 3: This figure shows the confusion matrix of the errors made by the classifier. The y-axis are represents the actual label
and the x-axis represents the predicted label. The key to the right of the plot shows the colors assigned to each block of the
matrix based on the number of errors between actual and predicted labels of each type. The bottom row of the x-axis shows
where the actual label was no_type and the model predicted another label. The last column (farthest to the right) on the y-axis
shows where the model predicted no_type, despite being labelled as belonging to a type.

Table 3: Classification Report: Multi-Class

P R F1 n
no_type 0.99 0.99 0.99 8764

3J Possible Drug Route 0.90 0.94 0.92 47
5S Suspicious Storage 0.94 0.91 0.92 32

1B Physical Appearance of Nervousness 0.88 0.92 0.90 126
1D Suspicious or Inconsistent Answers 0.86 0.87 0.87 127

4N Unusual Vehicle Ownership 0.87 0.88 0.87 75
5P Masking Agent 0.86 0.86 0.86 28

2E Motorist License or Identification 0.94 0.79 0.86 19
6T Other 0.86 0.86 0.86 14

5O Indicia of Hard Travel 0.90 0.82 0.86 11
5R Suspicious Communication Device 0.88 0.82 0.85 17

6W Suspicion Found? - Yes 0.82 0.85 0.83 53
2G Refused Consent 0.78 0.88 0.83 49

6V Suspicion Found? - No 0.83 0.83 0.83 30
3K Unusual Travel Plans 0.88 0.76 0.82 38

2H Legal Indications of Drug Use 0.83 0.79 0.81 57
1C Nervous Behavior 0.78 0.82 0.80 96

5Q Vehicle Contents Suggest Drugs 0.77 0.73 0.75 41
4M Vehicle License Plate or Registration 0.64 0.90 0.75 10

2I Appearance Related to Drug Use or Sale 0.75 0.71 0.73 17
1A Furtive Movement 0.79 0.62 0.70 24
4L Expensive Vehicle 0.33 1.00 0.50 1

2F Driver Status 1.00 1.00 1.00 1

accuracy 0.97 9678
macro avg 0.84 0.86 0.84 9678

weighted avg 0.98 0.97 0.97 9678

Upon further investigation, it appears that some of these “errors”
supposedly made by the model were actually the model correcting
errors occasionally made by manual annotation. Of the 243 “errors”,
the classifier had correctly assigned a label to a sentence that had
been mislabelled as no_type. For example, this sentence was mis-
annotated as belonging to no_type:

Officer Keeler testified that he reviewed the agreement
while filling out the citation and noted that the car
was not rented to Goss.

The classifier correctly predicted the label as 4N Unusual Vehicle
Ownership. Upon investigation of sentences labelled as no_type,
where the model predicted the sentence as a type, it appears that
the model reliably caught flaws in manual annotation and predicted
the correct label.

Since we plan to use factors to explain case outcomes and to use
factor-based predictions of case outcomes to validate the factors
we identified, it was important to annotate only factors on which
the court relied even though this would complicate the machine
learning process and lead to false positives. The annotation guide-
lines direct one to annotate sentences describing “factors the court
relies upon in reaching its result.” As a result, in certain situations,
a sentence in an opinion may appear to be an instance of a factor,
but it should not be annotated.

For instance, the court may have employed a sentence to describe
a factor in another case that it has cited. For example, a court may
say something like

In Smith v. State, the trooper noted that there were
rolling papers in the vehicle. In this case, the trooper
also noticed rolling papers in the vehicle.

Only the second sentence should be annotated because it discusses
a factor in the case at hand. The first sentence looks very much like
the second, however, leading the model to make an error.
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Alternatively, a sentence may describe something the officer
observed after making the determination of reasonable suspicion.
Since the court should not rely on this factor in analyzing whether
the officer’s suspicion was reasonable, the sentence should not
be annotated. For example, the classifier labelled the following
sentence as an instance of factor 5Q, Vehicle Contents Suggest
Drugs.

The officer then observed rolling papers consistent
with those used by drug users as well as tobacco
spread around the interior of the car.

Since rolling papers are a type of paraphernalia used to consume
drugs, this sentence appears of a type indicating that the vehicle
may contain drugs. The officer, however, did not make this obser-
vation until after making the determination of suspicion. Legally,
such post hoc observations are irrelevant.

Another source of classification errors is the fact that even
though sentences were annotated at the sub-sentence level, the
model needs to make predictions at both the sentence and sub-
sentence level. A sentence in the test set may have parts to which
different labels should be assigned. Since the classifier lacks a mech-
anism to break a sentence down into parts and predict their labels,
the classifier would be forced to choose a single label for a sen-
tence describing more than one factor. For example, the following
sentence should have been assigned two labels, factors 2G, Legal
Indications of Drug Use, and 1D, Suspicious or Inconsistent Answer:

Blake testified that Dion’s “drug trafficking history,
which he obviously lied about,” contributed to Blake’s
rising suspicions.

The model, however, only predicted one of the labels, factor 2G. A
majority of the errors where the classifier mistook one label for
another appeared to be due to the sub-sentence annotation scheme.
Of all 43 such errors, 30 involved sentences with multiple labels.

5.2 Using Machine Learning to Predict
Outcomes and Assess Factors

Table 4 shows a break down of the performance of each model, on
gold standard annotations, in predicting case outcomes based on
the factors in our list. The best performing models were tied, with
the neural network and the random forest models predicting with
0.975 accuracy. All models clearly outperformed the naive baseline
models.

These models predicted the outcome of reasonable suspicion
with a high degree of accuracy. The results show that the 20 factors
of suspicion listed in Table 2 can be used to predict the outcome of
suspicion with roughly 98% accuracy. Given the cross-validation
training and testing procedure and the accuracy on the test set,
likelihood is very low that the models overfit the data.

Further analysis shows which factors are the most important
in predicting the outcome. As noted, variable importance metrics
can be calculated for many of the models, including all of the best
performing models, that is, the models with an accuracy of greater
than 0.90.

First, where applicable, the importance of each input for a partic-
ular model was determined by calculating its variable importance.
As noted by [9] this can help disambiguate a model’s behavior by

shedding light on what variables were important in reaching a pre-
diction. Two factors are very important to the analysis of reasonable
suspicion. The first concerns whether the motorist gave a suspi-
cious answer; the second is whether the motorist was stopped on a
route known for drug trafficking or coming to or from a city/area
known for drug trafficking. In almost every model, with the excep-
tion of the neural network, factor 1D, Suspicious or Inconsistent
Answers, was identified in the top three most important variables
to the model. It was the most important in the GLM and ElasticNet
models, the second most important in the XGBoost model, and
the third most important in the random forest and decision tree
models. Next, factor 3J, Possible Drug Route, was identified as an
important factor in all but one model, random forest. This was the
most important factor for the XGBoost model and the second most
important factor for the GLM, ElasticNet, the neural network, and
the decision tree.

A third factor, 4N Unusual Vehicle Ownership, was the most im-
portant feature in the neural network, the second most important
feature in the random forest model, and the second most important
in the decision tree model. As discussed below, this feature is par-
ticularly important to the decision tree and can be used to better
understand predictions made by the model.

Analysis also shows the factors that are not important. A hall-
mark of the ElasticNet model is that it “turns off” unimportant
features in a model by pushing coefficients to 0. The ElasticNet
model that we trained used pure Lasso Regression to push the co-
efficients for 11 factors of suspicion to 0: 1C Nervous Behavior,
1B Physical Appearance of Nervousness, 2G Refused Consent, 3K
Unusual Travel Plans, 4M Vehicle License Plate or Registration, 5Q
Vehicle Contents Suggest Drugs, 5S Suspicious Storage, 2E Motorist
License or Identification, 1A Furtive Movement, 2F Driver Status,
and 5O Indicia of Hard Travel.

Some of the factors that were pushed to 0 reflect legal require-
ments or courts’ legal observations. For example, the law prohibits
using a motorist’s refusal to consent to a vehicle search against the
motorist in determining whether reasonable suspicion is present.5
In addition, some courts state that nervousness has limited utility in
determining whether suspicion is reasonable, because many people
are nervous when stopped by the police6.

The “turning off” of other factors, however, does not seem con-
sistent with legal requirements. According to Lasso regression,
Factor 5Q, Vehicle Contents Suggest Drugs, was unimportant. This
factor encompasses the smell of drugs, drugs in plain view, and
paraphernalia in plain view. Normally, the fact that drugs and/or
paraphernalia were in plain view in the automobile would deter-
mine the presence of reasonable suspicion but would also provide
probable cause to search a vehicle 7 Although the dichotomous
feature representation shows that the presence of factors alone is a
representation of the factors worthy of accuracy at roughly 98%,
clearly the binary coding fails to capture important insights like

5“Courts generally hold that refusal to consent cannot establish or-according to some
courts-even support reasonable suspicion." State v. Gomez, 275 P.3d 1073, 1077 (Utah
App. 2012).
6“We have repeatedly held that nervousness is of limited significance in determining
reasonable suspicion and that the government’s repetitive reliance on the nervousness
of either the driver or passenger as a basis for reasonable suspicion . . . ” United States v.
Fernandez, 18 F.3d 874, 179 (10th Cir. 1994)
7Walter v. State, 28 S.W.3d 538 (Tex. Crim. App. 2000)
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Table 4: Model Performance

Model Name Accuracy on Test Set 3 Most Important Variables Model Parameters
Generalized Linear Model 0.902 1D, 3J, 5P Binomial Family

Elastic Net 0.902 1D, 3J, 5P 𝛼 = 1, 𝜆 = 0.0258
Neural Network 0.975 4N, 3J, 5P Hidden Layers = 5, Decay = 0.1
Random Forest 0.975 5S, 4N, 1D 𝑚𝑡𝑟𝑦 = 11

XGBoost 0.951 3J, 1D, 5S 𝜂 = 0.05, Iters = 200, Depth = 5
Decision Tree 0.801 1D, 4N, 3J, Complexity Parameter = 0.07

kNN 0.83 NA k=14, Distance = Jaccard
Weighted kNN 0.829 NA Weight = Optimal

Most Frequent Label Baseline 0.64 NA NA
Random Label Baseline 0.46 NA NA

the relationship between reasonable suspicion and probable cause.
This anomalous result begs further investigation.

Our tentative conclusions as to the importance or lack of impor-
tance of particular factors of suspicion are subject, of course, to the
limited number of cases in our corpus, 211 in all. 8 Our ability to
draw such conclusions, even tentatively, illustrates, however, the
kinds of empirical legal analyses that can be applied to ever larger
numbers of cases once factors can be identified automatically.

The results of our two experiments confirm the feasibility of a
pipeline to automatically identify the factors we selected to repre-
sent auto stop cases and, based on those factors, to predict whether
reasonable suspicion is satisfied. The level of accuracy in predicting
reasonable suspicion outcomes validates our selection of factors
to annotate. Although under the law any factor can be relevant, it
appears that certain patterns of commonly recurring facts are im-
portant. Presumably, if the fact patterns identified by this research,
the level of granularity needed to identify the factors of suspicion,
and the grouping of the factors were a poor estimate of the law, the
predictive accuracy of these models would be considerably lower.

The high accuracy also validates the annotation scheme that
we have developed for identifying the factors. It enables one to
identify language describing factors both to train a factor classifier
and to predict courts’ determinations of reasonable suspicion. This
indicates that using automatically identified factors as inputs to a
model could be viable. In developing the factor annotation scheme
we tried defining the factors at various levels of granularity, ranging
from a high of 66 different factors to a low of 14 (12 substantive
and 2 conclusion factors). Ultimately, we decided on 23 factors of
suspicion, with 21 substantive labels and 2 conclusion labels. The
choice represents a compromise across a number of considerations.
If the granularity were too high, there would be too much noise
in the classes. If too fine, overlapping features of factors may be
overlooked, which could also introduce noise. With too many fea-
tures, models are prone to over-fitting and do not generalize well.
Moreover, as the number factors increases, annotation becomes
more burdensome, and the need for training data increases due to
more classes.

One can compare the predictive accuracy of our models with
those of full-text prediction approaches. For example, Medvedeva

8Five cases were dropped from this experiment because the court’s legal conclusion
was unclear.

reported achieving average accuracy of 79% in categorizing judge-
ments according to whether or not the court found a violation of
9 articles of the European Convention on Human Rights. [20]. We
note that the 206 × 22 matrix used to represent the name of each
case, the factors of each case, and the outcomes of each case is
significantly smaller than other methods. This is a large reduction
from the thousands of words that would need to be represented
if using a text-based methods. The binary factor representation
avoids the need for large structures to represent words such as
bag-of-words representations or word embeddings. The relatively
small 206× 22 matrix is easy to understand, simple to create, and is
computationally inexpensive to operate. Furthermore, using such
representations in machine learning models reduces training time.
This representation does not affect the efficacy of model perfor-
mance in predicting the reasonable suspicion outcomes. Perhaps
more importantly, as discussed below, it enables explaining case
outcomes in ways that deep learning models cannot.

6 EXPLAINING CASE OUTCOMES
The models’ calculations and estimations can be used to explain
case outcomes in complementary ways. We focus particularly on
the decision tree and the distance used to calculate the nearest
neighbors in the kNN model. These models are more interpretable
than methods like neural networks, random forests, or XGBoost.

Our decision tree, based on the CART method, splits the features
into regions. For each region of the tree, it searches across every
value of every feature, assesses the loss at that split, and recursively
performs this procedure, choosing the split that gives the lowest
error. In other words, a split, in our tree represents where the model
has chosen that the presence or absence of a particular factor results
in a prediction with the lowest amount of error as compared to the
presence or absence of any other factor. Since the tree generated
by the model, shown in Figure 4, represents how all predictions
were made, the model’s prediction for a particular case is readily
interpretable.

When classifying an incoming data point, the tree begins at the
root node, and proceeds to apply the tests at each node through the
rest of the tree until it reaches a terminal node with the predicted
classification. In Figure 4 factor 4N, Unusual Vehicle Ownership,
is at the root node of the tree. Thus, the model first asks whether
factor 4N is present in the input case. If 4N is present, the left
branch is followed, reaching a terminal node. The model predicts
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Figure 4: This was the decision tree generated by the training data using a complexity parameter of 0.07. The nodes pictured in
green show where the decision tree assesses whether a factor is present. The factors considered by the tree are 4N Unusual
Vehicle Ownership, 1D Suspicious or Inconsistent Answers, 3J Possible Drug Route, and 2I Appeareance Related to Drug Use or
Sale. Depending on the presence of the factors, which are assessed by the green nodes, the model eventually stops at a terminal
node (blue) and will predict the outcome an outcome of Suspicion Found or Suspicion Not Found based on a probability.

that reasonable suspicion is found with a probability of 0.78. If 4N
is not present the right branch is followed and the model asks if
factor 1D, Suspicious or Inconsistent Answers, is present. If yes, the
left branch leads to a terminal node and a prediction of reasonable
suspicion found with a probability 𝑝 = 0.67. The decision tree
provides both a prediction and an explanation in terms of a rule
readily induced from the branches based on the answers to the
factor tests.

From the viewpoint of empirical legal studies, the decision tree
in figure 4 also provides some significant information about the
auto stop legal domain, at least based on the 211 cases in our corpus.
The presence of factor 4N, Unusual Vehicle Ownership resolves
43% of the training data. If factor 4N is not present, the presence of
factor 1D resolves another 28% of cases. Similar observations apply
with respect to factors 3J, Possible Drug Route, and 2I, Motorists
Appearance Related to Drug Use. Achieving this kind of insight
about a legal domain motivates empirical legal scholars such as Prof.

Beebe to identify factors and apply models like decision trees. With
the ability to apply text analytics to identify factors automatically,
researchers can process many more cases and strengthen their
conclusions.

In order to further explain a case outcome, we employ the dis-
tance metric of the kNNmodel to calculate similarity between cases.
We trained the kNN model using Jaccard Distance. We focus on the
model’s metric of dissimilarity. For vectors of dichotomous features,
dissimilarity is calculated as

𝑓01 + 𝑓10
𝑓11 + 𝑓01 + 𝑓10

Let 𝑓 represent a factor, 𝑐𝑎𝑠𝑒𝑥 represent a single observation in
the data frame, i.e., a legal opinion represented by dichotomous
inputs, and 𝑐𝑎𝑠𝑒𝑦 represent a different case represented in the same
way. In the formula above, 𝑓01 represents the scenario where an
individual factor was not present in 𝑐𝑎𝑠𝑒𝑥 but was present in 𝑐𝑎𝑠𝑒𝑦 .
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The reverse is true for 𝑓10, in this situation a factor was present
in case 𝑐𝑎𝑠𝑒𝑥 but was not in 𝑐𝑎𝑠𝑒𝑦 . Lastly, 𝑓11 represents the situa-
tion where a factor was present in both 𝑐𝑎𝑠𝑒𝑥 and 𝑐𝑎𝑠𝑒𝑦 . Take for
example, the following vectors:

𝑣0 = [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
𝑣1 = [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

These vectors have a dissimilarity of 0.0, because they are iden-
tical. As dissimilarity between the vectors increases, so does the
score. Thus, the following vectors have a dissimilarity score of 0.625

𝑣0 = [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
𝑣1 = [1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0]

Measuring dissimilarity between the cases represented as di-
chotomous vectors is useful because we can compute the distance
between cases based on the factors that are and are not present,
and use that similarity to identify cases with similar facts and out-
comes to support a lawyer’s argument. Conversely, lawyers would
also be interested in knowing about cases that have similar facts,
and different outcomes. Certainly, this high level representation of
facts does not replace a lawyer’s skill in reading, understanding,
comparing, and contrasting cases to formulate legal arguments.
Nonetheless, these empirical insights can serve as a useful guide in
understanding auto stop cases.

By reporting a combination of predictions from the neural net-
work and random forest models, which are hard to explain, as well
as the decision tree, which indicates which factors are important,
and the dissimilarity metric between cases, we can better explain
case outcomes.

6.0.1 Example Explanation. In this example, we focus on the expla-
nation of a single case using the methods described above. Assume
that six factors apply to the focal case: 1B, Physical Appearance
of Nervousness, 1C, Nervous Behavior, 1D, Suspicious or Incon-
sistent Answers, 4N, Unusual Vehicle Ownership, 5O, Indicia of
Hard Travel, and 5P, Masking Agent. The corresponding vector
representation of the focal case is:

[1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
Both the random forest and the neural network models pre-

dicted an outcome of reasonable suspicion for this case. The neural
network predicted that reasonable suspicion was present in this
case with a probability 0.99%. The random forest model, predicted
reasonable suspicion present with a probability of 0.95%. Both mod-
els are highly confident in these factor-based predictions, lending
credibility that the factors are a sound representation.

In order to gain some insight about the individual factors, we
next refer to the decision tree. An examination of the feature vector
shows that factor 4N, Unusual Vehicle Ownership, is present. Ac-
cording to the decision tree, we know that this factor is important to
the suspicion analysis and if present, the decision tree, will explain
the presence of reasonable suspicion with a probability of 0.78.

Finally, comparing the current fact situation with the most sim-
ilar cases may lead to a better understanding of on what a fact
situation’s outcome depends. We can measure the Jaccard dissimi-
larity between the case of interest and all other cases. The resulting
scores are ranked from most similar to dissimilar. Then the value
of each score is determined by the following criteria:

Score = 0.0: The case is directly on point.

Score = 0.1-0.3: This case is not directly on point but is similar
to the case of interest.
Score = >0.3: This case is likely to be unhelpful.

The top five cases with scores of 0.3 or less are reported, along with
a comparison of the factors and the conclusion reached. If there
are fewer than five cases with acceptable scores, then only cases
meeting the scoring criteria are reported. Applying this procedure
to the given case yields:

Rank = 1:
Case Name: United States v. Anguiano
Score: 0.2
Similar Factors: ’1B’, ’4N’, ’1C’, ’1D’, ’5O’
Dissimilar Factors: ’6T*’, ’5P-’
Outcome: Suspicion Found

Rank = 2:
Case Name: State v. Myles
Score: 0.3
Similar Factors: ’1B’, ’4N’, ’1C’, ’1D’
Dissimilar Factors: ’3K*’, ’5O-’, ’5P-’
Outcome: Suspicion Found

These outputs provide the name of the similar case, the similarity
score, the factors that were similar between the cases, the factors
that were different, and the outcome of the case. Dissimilar factors
that are present in the case of interest, but not present in the similar
case are represented with a “-”; those that are present in the similar
case but not in the case of interest are identified with a “*”. In this
example, there were five similar cases. The rest of the cases (not
shown) had a score of 0.3.

Here, the most similar cases both happen to have findings of rea-
sonable suspicion. Factors 1B, Physical Appearance of Nervousness,
1C, Nervous Behavior, 1D, Suspicious or Inconsistent Answers, and
4N, Unusual Vehicle Ownership, seem to lie at the core of the two
similar cases. (Indeed, the decision tree focused on the importance
of 4N and 1D.) The presence in the focal case of 5P, Masking Agent,
or 5O, Indicia of Hard Travel, does not seem to make a difference to
the outcome, nor does the absence of 3K, Unusual Travel Plans or
6T, Other. Nearby cases might well have had the opposite outcome,
however, which might reduce one’s confidence in a prediction. Such
counterexamples can provide information about factors whose pres-
ence or absence is significant and result in the opposite outcome.

6.0.2 Prediction with Automatically Identified Factors. In Section
5.1, machine learning was employed to predict and explain case
outcomes based on manually-identified factors. Suppose automati-
cally identified factors were employed to predict and explain the
outcome of the focal case in the example of the previous subsection.

Table 5: Comparison of gold standard and automatically iden-
tified feature vectors

POSITION: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
ROBERTA: [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
GOLD: [ 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
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A visual comparison of the gold standard annotated vector shows
that the classifier missed three factors located in position 0, 5, and
17. At this point, machine learning models used to predict and
explain an outcome would be based on similar, but different subsets
of factors. Based on the automatically classified factors, all models
would still correctly predict the outcome of suspicion. As observed
above, the roBERTa model identified factors 4N, Unusual Vehicle
Ownership, and 1D, Suspicious or Inconsistent Answers, which
we know are important variables, as determined by the variable
importance calculations, and are important in reducing error in
the decision tree. The roBERTa model failed to identify factors that
happened to have been “turned-off” by regularization (1B, and 1C).
Although, there is no necessary link between which factors the
roBERTa model will classify and those that will be important in the
prediction models, it seems that what we learned in the previous
subsection on explaining outcomes still holds.

7 FUTURE WORK
A limitation of the classifier discussed above is that we do not
include a mechanism to break up test sentences into multiple parts,
therefore, a test sentence that describes multiple-factors, using our
current approach will only receive a single label. We hypothesize
that by using parsing methods, we may be able to effectively break
up sentences. We seek to improve the automatic identification of
factors and to identify other models that may have interpretable
usefulness.

8 CONCLUSION
Our results provide meaningful evidence that automatic identifi-
cation of auto-stop factors is feasible. Moving forward, based on
the factor identification experiment, we will attempt to increase
the amount of training data, improve the text analytic techniques,
and apply them to ever larger numbers of auto stop cases. As we
increase the number of annotated cases, we will revisit our tentative
conclusions that judicial determinations of reasonable suspicion
depend on a relatively small subset of commonly used factors and
report our methods and results to the empirical legal research com-
munity.

Analysis of the machine learning experiments indicates that less
interpretable methods to predict outcomes of auto stop cases can
achieve high levels of accuracy while less accurate but more inter-
pretable models can shed light on these predictions. We show that
by combining these methods, a system can explain case outcomes
in terms that legal professionals can understand.

Potentially, one could imagine a system that would allow a hu-
man user to enter factors and obtain a prediction of an outcome
should the auto-stop search be contested before a court. We leave
consideration of this possibility and how to achieve it for future
work.
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